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We investigate the velocity relaxation of a viscous one-dimensional granular gas in which neither energy nor
momentum is conserved in a collision. Of interest is the distribution of velocities in the gas as it cools, and the
time dependence of the relaxation behavior. A Boltzmann equation of instantaneous binary collisions leads to
a two-peaked distribution, as do numerical simulations of grains on a line. Of particular note is that in the
presence of friction there is no inelastic collapse, so there is no need to invoke additional assumptions such as
the quasielastic limit.
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Velocity distributions in dilute granular gases are generi-
cally away from equilibrium because the collision processes
are dissipative. Even in the dilute limit the velocities of dif-
ferent particles may be strongly correlatedf1g, and therefore
the usual description in terms of single particle distribution
functions may not be sufficient to determine all the proper-
ties of the granular gas. Nevertheless, even the single particle
velocity distributionPsv ,td contains important information,
and is particularly interesting because in a granular gas it
typically deviates from the Maxwell-Boltzmann distribution.
These deviations have been a subject of intense interest in
recent yearsf2,3g both in granular gases that achieve a steady
state because external forcing balances the dissipative colli-
sions among particlesf4,5g, and in unforced gases as they
cool downf6–9g.

Typically, gases equilibrate or achieve a steady state via
collision processes defined by the conservation of energy and
momentumf10g. In granular media the situation is more
complex becauseenergy is not conservedf11g. A particularly
bothersome behavior induced by energy nonconservation is
the so-called “inelastic collapse,” whereby the energy of the
gas goes to zero in a finite timef6g. In the “quasielastic
limit” the inelastic collapse is avoided, and one obtains non-
trivial asymptotic velocity distributionsf4,7,8,12g with fea-
tures similar to the ones obtained in this paper.

Friction induces not only nonconservation of energy but
also nonconservation of momentum, leading to interesting
new relaxation behaviorf5,13,14g. Our focus here is the ef-
fect of viscosity, and consequently, of momentum nonconser-
vation, on the velocity distribution as a one-dimensional di-
lute granular gas cools down. The model consists ofN grains
on a linesor a circle, since we use periodic boundary condi-
tionsd. The grains move freely except during collisions, gov-
erned by the Hertz potential,Vsdk,k+1d=sa/nduduk,k+1

n whend
ø0, andVsdk,k+1d=0 whend.0. Heredk,k+1;yk+1−yk is the
relative displacement of granulesk and k+1 from the posi-
tions in which they just touch each other without compres-
sion, anda is determined by Young’s modulus and Poisson’s
ratio. The exponentn is 5/2 for spheres, it is 2 for cylinders,
and in general depends on geometry. Here we only consider

cylindrical grains, which leads to considerable simplification
while still capturing important general features of the non-
Maxwellian distributions.

A collision between real granules always involves some
momentum and energy lossf15g. Here we take these losses
during the collisions. Hence,during a collisionof the gran-
ulesk andk+1, their equations of motion are respectively

d2xk

dt2
= − g

dxk

dt
− sxk − xk+1dn−1,

d2xk+1

dt2
= − g

dxk+1

dt
+ sxk − xk+1dn−1, s1d

where xk=yk/Cn, t= t̃v0/Cn st̃ is the unscaled timed, g
=sg̃ /mv0dCn, Cn;smv0

2/ad1/n, and g̃ is the friction coeffi-
cient. The arbitrary velocityv0 sets the energy scale.

The one-sidedness of the potential leads to analytic com-
plexities even in the dissipationless one-dimensional case
f13,16g, and even greater complexities in the presence of
dissipationf13g. We explore the effects of friction atlow
densities, implemented via the assumption that the collisions
are alwaysbinary, that is, that only two granules at a time are
members of any collision event, and that at any moment
there is at most one collision.

Our analytic starting point is the Boltzmann equation for
binary collisions in a spatially uniform gas, which describes
the rate of change ofPsv ,td. If u1 and u2 are the initial
velocities of a pair of particles just before a collision andu18
andu28 their velocities just after, then the Boltzmann equation
is

]

]t
Psv,td =E E du1 du2 usu1 − u2dsu1 − u2dPsu1,tdPsu2,td

3 fdsv − u18d + dsv − u28d − dsv − u1d − dsv − u2dg.

s2d

Since the problem is one-dimensional, one can keep track of
the precise conditions under which a collision between two
particles of given velocities will or will not occur, and how

PHYSICAL REVIEW E 71, 032301s2005d

1539-3755/2005/71s3d/032301s4d/$23.00 ©2005 The American Physical Society032301-1



these events will change the distribution function. The par-
ticle on the left is that with initial velocityu1, and a collision
takes place if and only ifu1.u2, a restriction enforced by
the Heaviside theta functionusyd.

The duration of a collision ist;2p /Î8−g2, after which
the grains lose contact. Forn=2 the collision timet is inde-
pendentof the initial condition. The velocities at the moment
of separation aref13g

u1,28 = u1
m2 7 m

2
+ u2

m2 ± m

2
, s3d

wherem;e−gt/2. The distance traveled by the granules dur-
ing a collision is assumed to be negligible. For small damp-
ing g this distance issu1+u2dp /Î8. This is to be compared to
the mean distance between particles, which can be made ar-
bitrarily large by lowering the density. We also take the col-
lision time as instantaneous. For small damping it ist
<p /Î2, to be compared with the typical mean free time of
flight of a particle between collisions. With these approxima-
tions, the only role played by the viscosity is dictated by the
collision rule s3d. These assumptions might conceivably be
problematicsbut unlikely to be important at sufficiently low
densitiesd for the most energetic particles that may travel a
relatively long distance during a collision and have relatively
short flight times.

In the long-time asymptotic limit we assume a scaling
solution of the formPsv ,td=F(v /fstd) /fstd. This scaling in
Eq. s2d with Eq. s3d leads tofstd, t−1. Haff obtained this
behavior sHaff’s Lawd in his classic paper on a hydrody-
namic inelastic hard sphere model for a granular fluidf3g.

We have not found an analytic solution of the Boltzmann
equation. We therefore simulate the equation numerically
and also implement a further approximation that leads to an
analytic solution that we can compare with the numerical
results.

We directly simulate the Boltzmann equation using the
following algorithm.s1d Start withN grains whose velocities
are independently assigned accordingly to an initial distribu-
tion Psv ,0d. s2d Choose one pair of grains with probability

proportional to the modulus of their relative velocity and let
them collide, using the collision rule.s3d Increment time by
twice the inverse of the modulus of the precollisional relative
velocity. The factor of 2 accounts for picked pairs that do not
collide, since our algorithm forces a collision at each step.
s4d Iterate these three steps many times and for many
samples.

In our simulations we tookN=100 and averaged our re-
sults over 1000 samples. In Fig. 1 we show the resulting
velocity distribution forg=0.9 at different times. The initial
symmetric and single peaked distribution develops two dis-
tinct peaks as it starts to collapse to the ultimate equilibrium
distribution, ad-function atv=0. The validity of the scaling
solution is evident in the scaled rendition of the velocity
distribution shown in Fig. 2. In the underlying simulation the
initial distribution was a double peaked Gaussian, chosen
because it converges quickly. We find the same asymptotic
behavior for the initially exponential distribution.

A two-peaked velocity distribution has previously been

FIG. 1. Velocity distribution obtained using
the simulation algorithm detailed in the text.
From left to right and top to bottom, the panels
correspond to time 0, 8000, 16000, 32000, 64000,
and 128000 in the adimensional units used in this
paper. The initial distribution is a symmetric ex-
ponential. Notice the change in the scales as time
proceeds.

FIG. 2. Asymptotic behavior of the scaled velocity distribution.
Different symbols stand for different timess100032n with n
=0,1, . . . ,13d. The constantc in the figure is arbitrary and was
chosen to facilitate comparison with Fig. 3.
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found in a number of studiesssee, e.g.,f17gd, in particular in
the context of one-dimensional momentum-conserving
granular gases that exhibit inelastic collapse, which occurs
because particles whose inelastic collisions are described by
a constant restitution coefficientr can collide infinitely often
in a finite time. This drives their energy to zero in a finite
time f6g unlessN is sufficiently large. To avoid the collapse,
it is customary to introduce extraneous assumptions such as
the “quasielastic limit”r →1 andN→` in such a way as to
always remain below a collapse threshold. In this limit, a
double-peaked velocity distribution is also observed
f6–8,17g. Another way to avoid the collapse is to impose
elasticitysor stickynessd on collisions between particles with
relative velocity smaller than a given arbitrary positive
thresholdf17g.

An interesting hydrodynamic analysis based on numerical
simulations that also arrives at a two-peaked velocity distri-
bution sand that also deals with the issue of the inelastic
collapsed leads to the conclusion that the usual hydrody-
namic variablessdensity, velocity, and granular temperatured
are not sufficient, and that an additional variable must also be
includedf8g. Benedettoet al. study the problem analytically
sagain in the quasielastic limitd and also arrive at the conclu-
sion that the velocity distribution is non-Maxwellian. A very
recent study of a two-dimensional collection of disks in a
channel finds that the shape of the velocity distribution de-
pends on the coefficient of restitution and on the Knudsen
number f18g. They find a bimodal distribution when the
Knudsen number is high but a unimodal distribution when it
is low. We stress again that in thepresence of frictionthere is
no inelastic collapse, and the double-peaked distribution oc-
curs regardless of the parameter values as long as there is
friction.

While the Boltzmann equation does not appear amenable
to analytic solution, we can formulate a simpler model that
may incorporate its main features. In this model we have an
ensemble of rings of sizel each containing only two par-
ticles. In each ring, the dynamics is perfectly deterministic:
the two balls keep colliding with each other, back and forth,
moving toward each other with ever decreasing velocities.
For each one ring, aftern collisions, the velocitiesun andvn
are obtained by repeated application of the collision rules3d,

un =
m2n + s− mdn

2
u0 +

m2n − s− mdn

2
v0,

vn =
m2n − s− mdn

2
u0 +

m2n + s− mdn

2
v0, s4d

where u0 and v0 are the initial velocities. Note that each
velocity alternates from positive to negative as the particles
move in one direction and then another in the ring. The dis-
tance traveled between two collisions isl, and the travel time
is l / uu−vu, whereu andv are their current velocities between
collisions. Hence the time that has elapsed by thenth colli-
sion is

tn =
1

uDuok=0

n−1

m−k =
s1/uDumnd − 1

l
, s5d

whereD=su0−v0d / l andl=fs1/md−1g.
The sign alternation of the velocities in Eq.s4d is not

important in the effort to understand the long time behavior
of the distribution. We can approximate the velocities by
envelope functionsA+std and A−std and write un=A+stdu0

+A−stdv0, vn=A−stdu0+A+stdv0. The envelope functions can
be found by solving Eq.s5d for mn, substituting this into Eq.
s4d ignoring the minus signs in thes−mdn factors, and setting
tn; t. One finds

A±std =
1

2
s1 + uDultd−2 ±

1

2
s1 + uDultd−1. s6d

Hence, if initially the particles had a velocity distribution
Psv ,0d, then the velocity distribution as a function of time is

Psv,td =E E d„v − A+stdu0 − A−stdv0…

3 Psu0,0dPsv0,0ddu0dv0. s7d

Asymptotically,A+std=−A−std,1/2uD ult, so that

Psv,td =E E dSv −
l sgnsDd

2lt
DPsu0,0dPsv0,0ddu0dv0.

s8d

Therefore,Psu,td consists of twod peaks, one at positive
and one at negative velocities. If the initial normalized dis-
tribution is symmetric about zero velocity, then

Psv,td ,
1

2
dSv −

l

2lt
D +

1

2
dSv +

l

2lt
D . s9d

The peaks thus move toward the final velocityv=0 as 1/t.
This time dependence is in agreement with the Boltzmann
equation analysis.

The twod peaks here reflect the fact that the magnitude of
the velocity difference between the colliding particles even-
tually becomes independent of the magnitude of the initial
velocity difference. Clearly, in the Boltzmann equation this is
not quite the case and the peaks have a finite width as they
converge. However, this width decreases in time as 1/t,
approaching the behavior of the two-particle ring model
asymptotically.

In order to assess the validity of the Boltzmann equation
for the viscous granule problem, and to get a sense of the
possible effects of the spatial distribution of granules ignored
in that formulation, we have carried out numerical simula-
tions of a full chain of 10000 viscous particles. Our collision
rules are as indicated in Eq.s3d, and, as before, we assume
collisions to be instantaneous, but now we place the granules
on a line and keep track of their positions so that spatial
inhomogeneities can occur if the system is so inclined. The
particle density is 10−3 with the particles initially distributed
uniformly. The initial velocity distribution is a symmetric
exponential, andg=0.9. As time proceeds, the initial single
peak splits into two peaks which move inward and become
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narrower. Both the inward motion of the peaks and the width
of the peaks change as 1/t, as in the Boltzmann approxima-
tion. We tested the scaling hypothesis, and in Fig. 3 we show
the results averaged over 100 simulations. Clearly, the scal-
ing works quite well.

Comparing the velocity distribution for the Boltzmann ap-
proximation sFig. 1d and the simulations in a line, we find
that the Boltzmann model converges to the scaling distribu-
tion much more rapidly. Initially the simulation results ex-
hibit the same behavior as the Boltzmann model, but for
longer times the behavior of the two distributions for small

velocities begin to differ. In the Boltzmann case, the prob-
ability of finding a slow granule is much greater than in the
simulation.

We conclude that the Boltzmann problem in which spatial
dependences are disregarded captures many essential fea-
tures of the velocity relaxation in a viscous granular chain,
the most important being the appearance of two peaks in the
velocity distribution. The Boltzmann problem and even the
simpler two-particle simplification of the problem also cap-
ture the time dependence of convergence of the two peaks
into a single one. The slows1/td convergence is due to the
fact that the collision rate slows down as the gas cools. The
Boltzmann approximation does not correctly capture the late
time distribution of the slowest particles. This is probably
due to spatial correlations that have been ignored.

As mentioned earlier, one-dimensional momentum-
conserving granular gases may exhibit “inelastic collapse”
f6–8g. To avoid this, the “quasilastic limit” or otherad hoc
assumptions are frequently invoked, and in this limit, a
double-peaked velocity distribution is also observed. In the
presence of friction there is no inelastic collapse, and we
always observe a double-peaked distribution. A comparison
between those results and ours requires an understanding of
spatial correlationsf19g.
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FIG. 3. Asymptotic behavior of the scaled velocity distribution.
Different symbols stand for different timess100032n with n
=7,8, . . . ,13d. The constantc in the figure is arbitrary.
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