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Velocity distribution in a viscous granular gas
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We investigate the velocity relaxation of a viscous one-dimensional granular gas in which neither energy nor
momentum is conserved in a collision. Of interest is the distribution of velocities in the gas as it cools, and the
time dependence of the relaxation behavior. A Boltzmann equation of instantaneous binary collisions leads to
a two-peaked distribution, as do numerical simulations of grains on a line. Of particular note is that in the
presence of friction there is no inelastic collapse, so there is no need to invoke additional assumptions such as
the quasielastic limit.
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Velocity distributions in dilute granular gases are generi-cylindrical grains, which leads to considerable simplification
cally away from equilibrium because the collision processesvhile still capturing important general features of the non-
are dissipative. Even in the dilute limit the velocities of dif- Maxwellian distributions.
ferent particles may be strongly correlaidd, and therefore A collision between real granules always involves some
the usual description in terms of single particle distributionmomentum and energy lo$5]. Here we take these losses
functions may not be sufficient to determine all the proper-during the collisions. Henceluring a collisionof the gran-
ties of the granular gas. Nevertheless, even the single particldesk andk+ 1, their equations of motion are respectively
velocity distributionP(v,t) contains important information, P q
and is particularly interesting because in a granular gas it e _ y—xk—(xk-xkﬂ)“—l,
typically deviates from the Maxwell-Boltzmann distribution. dt’

These deviations have been a subject of intense interest in

recent year§2,3] both in granular gases that achieve a steady d*Xier1 —_ dXer1 + (X = X)) 1)
state because external forcing balances the dissipative colli- dt? Y dt ke Al o

sions among particleg4,5], and in unforced gases as they - _ _

cool down[6-9]. where x,.=Yy,/C,, t=tvy/C, (f is the unscaled time y

Typically, gases equilibrate or achieve a steady state via_r.(NV/ M) Cy, (?nE(mUS/ a)_lm1 and’y is the friction coeffi-
collision processes defined by the conservation of energy argient. The arbitrary velocity, sets the energy scale.
momentum[10]. In granular media the situation is more The one-sidedness of the potential leads to analytic com-
complex becausenergy is not conservedd]. A particularly plexities even in the dissipationless one-dimensional case
bothersome behavior induced by energy nonconservation [d-3,16., and even greater complexities in the presence of
the so-called “inelastic collapse,” whereby the energy of thedissipation[13]. We explore the effects of friction dow
gas goes to zero in a finite tim@]. In the “quasielastic ~densitiesimplemented via the assumption that the collisions
limit” the inelastic collapse is avoided, and one obtains nonare alwaysinary, that is, that only two granules at a time are
trivial asymptotic velocity distribution§4,7,8,17 with fea- ~ members of any collision event, and that at any moment
tures similar to the ones obtained in this paper. there is at most one collision. .

Friction induces not only nonconservation of energy but Our analytic starting point is the Boltzmann equation for
also nonconservation of momentureading to interesting DPinary collisions in a spatially uniform gas, which describes
new relaxation behavidis,13,14. Our focus here is the ef- the rate of change oP(v,t). If u; and u, are the initial
fect of viscosity, and consequently, of momentum nonconservelocities of a pair of particles just before a collision arjd
vation, on the velocity distribution as a one-dimensional di-andu; their velocities just after, then the Boltzmann equation
lute granular gas cools down. The model consists gfains IS
on a line(or a circle, since we use periodic boundary condi-
tions). The grains move freely except during collisions, gov- —P(v,t) :f f du; du, 6(uq = uy)(uy — uy) P(uy, t)P(u,,t)
erned by the Hertz potentia¥|(.1) =(a/n)|dlg s, Whens t
<0, andV(&x+1) =0 whens> 0. Heredy y+1=Yi+1— Yk is the X [ —ug) + 8(v = up) = 8v —uy) = 8v = uy)].
relative displacement of granulésandk+1 from the posi- )
tions in which they just touch each other without compres-
sion, anda is determined by Young’s modulus and Poisson’sSince the problem is one-dimensional, one can keep track of
ratio. The exponent is 5/2 for spheres, it is 2 for cylinders, the precise conditions under which a collision between two
and in general depends on geometry. Here we only considgrarticles of given velocities will or will not occur, and how
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these events will change the distribution function. The parproportional to the modulus of their relative velocity and let
ticle on the left is that with initial velocity;, and a collision  them collide, using the collision rulé€3) Increment time by

takes place if and only ifi;>u,, a restriction enforced by twice the inverse of the modulus of the precollisional relative
the Heaviside theta functiof(y). velocity. The factor of 2 accounts for picked pairs that do not

The duration of a collision is= ZWIGW, after which  collide, since our algorithm forces a collision at each step.
the grains lose contact. Far2 the collision timer is inde-  (4) lterate these three steps many times and for many
pendenbf the initial condition. The velocities at the moment samples.
of separation argl13] In our simulations we toolN=100 and averaged our re-
sults over 1000 samples. In Fig. 1 we show the resulting
velocity distribution fory=0.9 at different times. The initial
symmetric and single peaked distribution develops two dis-
tinct peaks as it starts to collapse to the ultimate equilibrium
whereu=¢e"7"2. The distance traveled by the granules dur-distribution, as-function atv=0. The validity of the scaling
ing a collision is assumed to be negligible. For small damp-solution is evident in the scaled rendition of the velocity
ing 7 this distance igu, +u,) /8. This is to be compared to distribution shown in Fig. 2. In the underlying simulation the
the mean distance between particles, which can be made dnitial distribution was a double peaked Gaussian, chosen
bitrarily large by lowering the density. We also take the col-because it converges quickly. We find the same asymptotic
lision time as instantaneous. For small damping itris behavior for the initially exponential distribution.
~ /2, to be compared with the typical mean free time of A two-peaked velocity distribution has previously been
flight of a particle between collisions. With these approxima-
tions, the only role played by the viscosity is dictated by the 4
collision rule (3). These assumptions might conceivably be
problematic(but unlikely to be important at sufficiently low
densitie$ for the most energetic particles that may travel a ;|
relatively long distance during a collision and have relatively
short flight times.

In the long-time asymptotic limit we assume a scalingg
solution of the formP(v,t)=F(v/ ¢(t))/ ¢(t). This scaling in 5 ?[
Eq. (2) with Eq. (3) leads to¢(t) ~t"L. Haff obtained this &
behavior (Haff’s Law) in his classic paper on a hydrody-
namic inelastic hard sphere model for a granular f{&H T+

We have not found an analytic solution of the Boltzmann
equation. We therefore simulate the equation numericall
and also implement a further approximation that leads to ai | )
analytic solution that we can compare with the numerical - 08 031 05 1
results.

We directly simulate the Boltzmann equation using the FiG. 2. Asymptotic behavior of the scaled velocity distribution.
following algorithm.(1) Start withN grains whose velocities Different symbols stand for different time€000x 2" with n
are independently assigned accordingly to an initial distribu=0,1,...,13. The constant in the figure is arbitrary and was
tion P(v,0). (2) Choose one pair of grains with probability chosen to facilitate comparison with Fig. 3.

R L
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found in a number of studigsee, e.g.[17]), in particular in n-1 ny _

: _ , 1 o (WA[pM -1
the context of one-dimensional momentum-conserving t”:XE’u =, (5)
granular gases that exhibit inelastic collapse, which occurs 1Afico A

because particlles'whose inglastic colli;iong are described WhereA:(uo—vo)/I and\=[(1/u)-1].
a constant restitution coefficientcan collide infinitely often
in a finite time. This drives their energy to zero in a finite
time [6] unlessN is sufficiently large. To avoid the collapse,
it is customary to introduce extraneous assumptions such
the “quasielastic limit'r— 1 andN—o° in such a way as to
always remain below a collapse threshold. In this limit, a
double-peaked velocity distribution is also observed
[6—8,17. Another way to avoid the collapse is to impose
elasticity (or stickynesgon collisions between particles with
relative velocity smaller than a given arbitrary positive 1 1
threshold[17]. Alt) = 5(1 +|AND) 2 £ 5(1 +|AND T (6)

An interesting hydrodynamic analysis based on numerical
simulations that also arrives at a two-peaked velocity distriHence, if initially the particles had a velocity distribution
bution (and that also deals with the issue of the inelasticP(v,0), then the velocity distribution as a function of time is
collapse leads to the conclusion that the usual hydrody-
namic variablegdensity, velocity, and granular temperafure P(v,t) = f J 8w — A,()Ug— A_(Hvy)
are not sufficient, and that an additional variable must also be
included[8]. Benedettaet al. study the problem analytically
(again in the quasielastic limiand also arrive at the conclu- X P(Uo, 0)P(vo, 0)dugdvo. @)
sion that the velocity distribution is non-Maxwellian. A very Asymptotically, A, (t)=—A_(t)~1/2|A|\t, so that
recent study of a two-dimensional collection of disks in a
channel finds that the shape of the velocity distribution de-  py, ) :JJ §<v N Sgr(A))P(uO,O)P(vo,O)duodvo.
pends on the coefficient of restitution and on the Knudsen 2\t
number[18]. They find a bimodal distribution when the (8)
Knudsen number is high but a unimodal distribution when it
is low. We stress again that in tipeesence of frictionthere is ~ Therefore,P(u,t) consists of twos peaks, one at positive
no inelastic collapse, and the double-peaked distribution ocand one at negative velocities. If the initial normalized dis-
curs regardless of the parameter values as long as there tioution is symmetric about zero velocity, then
friction. 1 | 1 |

While the Boltzmann equation does not appear amenable P(v,t) ~ —5<v - —) + —5(0 + —) (9)
to analytic solution, we can formulate a simpler model that 2 2\ 2 2\

may incorporate its main features. In this model we have afrhe peaks thus move toward the final veloaity0 as 1t.
ensemble of rings of sizé each containing only two par-  This time dependence is in agreement with the Boltzmann
ticles. In each ring, the dynamics is perfectly deterministic:equation analysis.

the two balls keep colliding with each other, back and forth, The two 5 peaks here reflect the fact that the magnitude of
moving toward each other with ever decreasing velocitiesine velocity difference between the colliding particles even-
For each one ring, after collisions, the velocitiesi, andvn,  tyally becomes independent of the magnitude of the initial
are obtained by repeated application of the collision (B)e  ye|ocity difference. Clearly, in the Boltzmann equation this is
not quite the case and the peaks have a finite width as they
converge. However, this width decreases in time ag 1/

The sign alternation of the velocities in EG) is not
important in the effort to understand the long time behavior
of the distribution. We can approximate the velocities by
aeﬁwelope functionsA,(t) and A_(t) and write u,=A,(t)ug
+A_(Hvg, va=A_(t)ug+A,(t)vy. The envelope functions can
be found by solving Eq(5) for u", substituting this into Eq.
(4) ignoring the minus signs in the-u)" factors, and setting
t,=t. One finds

2n n 2n n
un:'“ ) uo+’“ ) Vo, approaching the behavior of the two-particle ring model
2 2 asymptotically.
In order to assess the validity of the Boltzmann equation
for the viscous granule problem, and to get a sense of the
w2 = (= )" w?+ (= )" possible effects of the spatial distribution of granules ignored
Un= 2 0 2 vo, 4 in that formulation, we have carried out numerical simula-

tions of a full chain of 10000 viscous particles. Our collision

rules are as indicated in E3), and, as before, we assume
where uy, and vy are the initial velocities. Note that each collisions to be instantaneous, but now we place the granules
velocity alternates from positive to negative as the particle®n a line and keep track of their positions so that spatial
move in one direction and then another in the ring. The disinhomogeneities can occur if the system is so inclined. The
tance traveled between two collisiond j@nd the travel time particle density is 1 with the particles initially distributed
is1/|u-v|, whereu andv are their current velocities between uniformly. The initial velocity distribution is a symmetric
collisions. Hence the time that has elapsed byritiecolli-  exponential, andy=0.9. As time proceeds, the initial single
sion is peak splits into two peaks which move inward and become
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FIG. 3. Asymptotic behavior of the scaled velocity distribution.
Different symbols stand for different time€l000x 2" with n
=7,8,...,13. The constant in the figure is arbitrary.
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velocities begin to differ. In the Boltzmann case, the prob-
ability of finding a slow granule is much greater than in the
simulation.

We conclude that the Boltzmann problem in which spatial
dependences are disregarded captures many essential fea-
tures of the velocity relaxation in a viscous granular chain,
the most important being the appearance of two peaks in the
velocity distribution. The Boltzmann problem and even the
simpler two-particle simplification of the problem also cap-
ture the time dependence of convergence of the two peaks
into a single one. The sloWl/t) convergence is due to the
fact that the collision rate slows down as the gas cools. The
Boltzmann approximation does not correctly capture the late
time distribution of the slowest particles. This is probably
due to spatial correlations that have been ignored.

As mentioned earlier, one-dimensional momentum-
conserving granular gases may exhibit “inelastic collapse”
[6-8]. To avoid this, the “quasilastic limit” or othead hoc
assumptions are frequently invoked, and in this limit, a
double-peaked velocity distribution is also observed. In the

narrower. Both the inward motion of the peaks and the widttpresence of friction there is no inelastic collapse, and we
of the peaks change ast] as in the Boltzmann approxima- gjways observe a double-peaked distribution. A comparison

tion. We tested the scaling hypothesis, and in Fig. 3 we shoWeqween those results and ours requires an understanding of
the results averaged over 100 simulations. Clearly, the Scaé'patial correlation§19].

ing works quite well.

Comparing the velocity distribution for the Boltzmann ap-

proximation (Fig. 1) and the simulations in a line, we find
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